MMP Learning Seminer

Weak 2:
Bend and break,
rathonal ances,
Cono Therove !

MMP learning seminar:
Week 2:
1.- Bend and break,
2.- Finding rat curves when k_{x} is not nef,
3.- The Cone Theorem.

1. Bend and break:
(B\& BI)
Proposition: X proper, C smooth proper curve $p \in C$, poi $C \rightarrow X$ mon-ant. $O \in D$ pombed curve, $G: C \times D \longrightarrow X$ sib
(1) $\left.G\right|_{(\times 10)}=g_{0}$,
(2) $G($ api $\times D)=$ go pp and
(3) $\left.G\right|_{C_{x i t 9}}$ is diff then from go for general t.

There exist, $g_{1} i c \rightarrow x, z=\sum_{\substack{\text { ai sion }}}^{\text {coze of rat curves so that }}$

1) $\quad\left(g_{0}\right)+C \sim$ alg $\left(g_{1}\right)+(C)+Z$, and.
2) $g o(p) \in U_{i} Z_{1}$.

In partroulan there is a rat curve through goop.
Proof: $\bar{G}: C \times \bar{D} \rightarrow X$, is undefined at $\{p i \times \bar{D} \quad$ (Ringridy Lemma).
S the norm of the graph of $\bar{G}, \pi: S \longrightarrow C \times \bar{D}, G s: S \longrightarrow x$.

$$
h_{i} S \rightarrow C \times \bar{D} \rightarrow \bar{D}
$$

There exists cads $\in C \times \bar{D}$ so that r is not an som over (pid) $h^{-1}(\delta)=C^{\prime}+E, C^{\prime}$ fir transform of $C, E r$-exc.
$g_{ \pm}: C \longrightarrow X$, restriction of $G_{s} t_{0} C^{\prime}$ and $Z=G_{s}(E)$.
(Abhyankar Lemma): E is a union of rat corves.
(Luroth Thu): Z is a union of rat corves.

$$
\left(g_{0}\right)_{*} C \quad \sim_{2 g}\left(g_{1}\right) * C+z .
$$

Abhyamar Lemma: X has mild sing and $Y \xrightarrow{r} X$ proper birational morphism. For any xe X, either $\pi^{-2}(x)$ is a point or is covered by raf cunces.

(B\&B II).
Proportion: Let X be a pros var, poi $\mathbb{P}^{\prime} \rightarrow X$ non - cont.
D smooth point curve. $G: \mathbb{P}^{\prime} \times D \longrightarrow X$ sta.

1) $G\left\{\mathbb{P}^{1} \times\left\{0 p^{2}=g 01\right.\right.$
2) $\left.G(\{0\} \times D)=g_{0}(0), G(\{00\} \times D)=g_{0}(\infty)\right\}$, and
3) $G\left(\mathbb{P}^{\prime} \times D\right)$ is a surface

Then $\left(g_{0}\right) \times \mathbb{D}^{i}$ is $\sim_{a l y}$ to a reducible cure or a multiple curve

Proof: $\bar{G}: S \longrightarrow X, S_{\text {is }} 2 \mathbb{P}^{\prime}-$ bundle content $\mathbb{P}^{\prime} \times D$
$\widetilde{G}: \tilde{S} \longrightarrow X$, to induction on $\rho(\tilde{S} / 5)=\rho$

$$
\tilde{S} \longrightarrow S
$$

Case $1, \rho=0$, Co and Coo two sections at lo r and hoo\} ~ H ample on $X, \quad\left(\widetilde{G}^{*} H\right)^{2}>0$ and $\left(C_{0} \cdot \tilde{G}^{*} H\right)=\left(C_{\infty} \cdot \widetilde{G}^{*} H\right)=0$.
\qquad
$C_{0}^{2}<0, C_{00}^{2}<0 \quad$ Hodge index The: if $H^{2}>0$ for some cone
then the self int form then the self int form

$$
C_{0} \cdot C_{00}=0
$$

$$
\text { is neg def in } H^{2} \text {. }
$$

$\widetilde{G}^{*} H, C_{0}$ and Coo are 2.i.

$$
a \tilde{G}^{*} H+b C_{0}+c C_{\infty}=0
$$

$$
p(s)=2 .
$$

Case 2:
 $\begin{array}{r}i r \text { is the frist blow-up in } \quad \tilde{S} \rightarrow \\ \\ \hline \text { P. }\end{array}$ $y \in D$ will be the point orf $g^{-1}(y) \Rightarrow P$
F_{1} is the exe of r.
F_{2} is the strict tiras of $q^{-1}(y)$ in S^{\prime}.
 Claim: \bar{G}^{\prime} is a morphism around F_{2} $g_{0} * \mathbb{P}^{\prime} \sim \tilde{G} *($ (qov* $(y)), \underset{+}{\text { irretuable }}$

Asoume \bar{G} is not defined at $Q \neq P$.

$$
\left.\tilde{G}_{*}(\text { (gor })^{*}(y)\right)=\tilde{G}_{*} \operatorname{red}\left(\tilde{r}^{-1}(p)\right)+\tilde{G}_{*} \operatorname{red}\left(\tilde{r}^{-1}(\Omega)\right)+(\text { Ceff }) \quad \longleftrightarrow
$$

Assume \bar{G}^{\prime} is not lefined at Q_{0}., in this cese we need to blow-up Q_{0}. so $(\text { gor })^{*}(y)$ contains 2 comp of mult $\geqslant 2$.

Theorem $1 X$ smooth prog, $-N_{x}$ ample. For every $x \in X$, there exists a rat wove C through x sit.

$$
0<-K x \cdot C \leqslant \operatorname{dim} x+1
$$

Proof: Peck $C \subseteq X$ through x.
The space of def of C on X frying x has dim

$$
\begin{aligned}
& h^{0}\left(c, f^{*} T_{x}\right)-h^{\prime}\left(c, f^{*} T_{x}\right)=-f_{*} c \cdot k_{x}-g(c) \operatorname{dim} x . \\
& -\operatorname{dim} x
\end{aligned}
$$

(1) $g(c)=0$,
(2)

$$
\begin{aligned}
& g(c)=1, \quad C \xrightarrow{h} C \\
& -(f \circ h) * C \cdot h(x)-\operatorname{dim} X=-n^{2}(f *(C) \cdot h(x),-\operatorname{dim} x>0
\end{aligned}
$$

($31 g(C) \geqslant 2$. (ho entomorphims of por Jegree).
Ascome X and C are Lefined over \mathbb{Z}_{1}.
X_{p} and C_{p} reduction to $\overline{F_{p}}$.

$$
\left(y_{0}, \ldots, y_{m}\right) \xrightarrow{F_{p}}\left(y_{0}^{p}, \ldots, y_{m}^{p}\right)
$$

Speeciza
inj endomorphiom sef-the but is a morphism of degreep.
By generre flatress, $\left(f_{p}\right) *\left(c_{p}\right) \cdot K_{x_{p}}, j\left(c_{p}\right), \chi\left(T_{x} \mid c_{p}\right)$ for a $U_{\text {mav }}$ allp are the same

$$
C_{p} \xrightarrow{F_{p}^{m}} C_{p} \xrightarrow{f_{p}} X_{p}
$$

Leform spee has $\operatorname{dim}-p^{m}\left(\left(f_{p}\right)_{*}\left(C_{p}\right) \cdot N_{x p}\right)-g\left(C_{p}\right) \cdot \operatorname{tim}(x) \geq 0$ We produce 2 rational curve on X_{p} through the point.

If $A_{p} \cdot\left(-K_{x p}\right)>\operatorname{dim} x+1$, then Api deforms with two fixed pto by B\&BII, $\quad A p \sim_{2 l g} A_{p}^{\prime}+A_{p}^{\prime \prime}$, so that $A_{p}^{\prime} p$ and $A_{p}^{\prime \prime}$ are rat, pass through the point and have less "degree".

In X_{p}, we have the curve C_{p} through the pt with $-\left(K_{x p}\right) \cdot C_{p} \leq d_{m} x+1$.
Principle: If a homogeneaw system of alg eyas with cocff on \mathbb{Z} hes non-turial sols over \mathbb{F}_{p} for oo many p's, then it has 2 solution over any alg closed field
Idea: $z \subseteq \mathbb{H}_{\text {speer, }}^{N} \quad \pi: \mathbb{D}_{\text {speeR }}^{N} \longrightarrow$ Spec R proper. $r(Z)$ is closed. If $r(Z)$ contains a Zaniski dense set, we have that $R(z)=\operatorname{spec} R$

Theorems X smooth prog variety and H ample on X.
Assume there exists $C^{\prime} \subseteq X$ st. $-\left(C^{\prime}, K_{x}\right)>0$.
Then there exists E rational such theist.
f) $\quad \operatorname{dim} x+1 \geqslant-(E \cdot K x) \geq 0$
ii) $\frac{-\left(E \cdot K_{x}\right)}{E \cdot H} \geq \frac{-C^{\prime} \cdot K_{x}}{C!H}$.
there are rat curves

Theorem (Cone Theorem): X smooth pros.
There exists countably mary curves $\operatorname{Cr} \varepsilon X$:
i) $0<-K_{x} \cdot C_{i} \leqslant \tan x+1$.
and
$\left[\begin{array}{l}K_{x} \text {-neg part } \\ \text { of the cone of } \\ \text { corves is } \\ \text { loeilly polyhedral } \\ \text { awry from } k_{x} x^{2}\end{array}\right]$

$$
\overline{N E}(X)=\overline{N E}(X)_{k \times 2_{0}}+\sum_{i}^{i} \mathbb{R}_{z_{0}}\left[c_{i}\right] .
$$

Proof Choose $G_{i}(\operatorname{com} b<b l e)$ with $0<-\left(C \cdot K_{x}\right) \leq d_{m} x+1$.

$$
\begin{aligned}
& W=\text { closure }\left(\overline{N E} k \geq 0+\sum_{i}^{i} \mathbb{R}_{2_{0}}\left[C_{i}\right]\right) \\
& \overline{N E(X)} \geqslant W
\end{aligned}
$$

D positive on $W \backslash(0)$ and neg somewhere on $\overline{N E}(X)$.
H ample. $\mu=\max \left\{\mu^{\prime} \mid H+\mu^{\prime} D\right.$ is net $\}$.

$$
\begin{gathered}
H+\mu D \text { is nef } \quad H+\mu^{\prime} D \text { is ample } \\
\text { for } \mu^{\prime}<\mu .
\end{gathered}
$$

Then $K_{x} . z<0$, since $\overline{N E}_{k x \geq 0} \subseteq W$.

$$
Z_{k}=\sum_{j}^{i} a_{k j} z_{k j}, \quad\left[z_{k}\right] \rightarrow z
$$

max atfained by $Z_{k 0}$.

Replace Z_{k} with $k_{x} . \dot{z}_{k}<0$ by existence et $r_{2} t$ $E_{i(k)}$ rational with wives when K_{x} is not net

became $E_{i(k)} \cdot D \geq 0$. we hive

$$
\frac{-E_{i(u s)} \cdot K_{x}}{E_{i(a x)} \cdot H} \geq \frac{-Z_{k} \cdot K_{x}}{\left(Z_{k} \cdot\left(H+\mu^{\prime} D\right)\right)}
$$

Fix $M \gg 0$ such that $M H+K x$ ample.

$$
\left(M H+K(x), E_{i c k y}>0\right.
$$

$$
\begin{aligned}
& M>\frac{-E_{i(k)} \cdot K_{x}}{E_{i(k)} \cdot H} \geq \frac{-Z_{k} \cdot K_{x}}{Z_{k} \cdot\left(H+\mu^{\prime} D\right)} . \\
& \text { Take } k \rightarrow 00 \text {. } \\
& \mu^{\prime} \longrightarrow \mu \text {. } \\
& M>\frac{z \cdot k x^{\prime} \neq 0}{z \cdot(H+\mu D)} \longrightarrow \infty \quad \longrightarrow \\
& \overline{N E}(x)=\overline{N E}(x)_{k x \geq 0}+\sum_{i \text { comblie }} \mathbb{R}_{2_{0}}\left[c_{i}\right] \\
& x \rightarrow A \\
& x \leftrightarrow J(x) \rightarrow A \text {. } \\
& A=E \times E \\
& \overline{N E}(A) \text { is ranted }
\end{aligned}
$$

Existence of ret corves. $k x$ no net \Rightarrow roo rot cures.

